Достижения генетической инженерии животных

Несмотря на то что первые трансгенные животные были получены более 20 лет назад, до сих пор на рынке нет ни одного генетически модифицированного животного для использования в хозяйственной деятельности. Это связано с определенными техническими (сложности получения и размножения), финансовыми, а иногда и этическими проблемами. Тем не менее успехи в генетической инженерии животных очевидны. Разработаны различные методы переноса генов в генетический материал животных и получены трансгенные особи у млекопитающих, низших позвоночных и у беспозвоночных животных.

Созданы эффективные технологии клонирования, основанные на замене ядер у оплодотворенных яйцеклеток. Ученые научились не только переносить в генетический материал животных отдельные гены, но и «выключать» или заменять некоторые конкретные гены.

Безусловно, основным направлением исследований в области генетической инженерии животных является выведение пород с повышенной продуктивностью, устойчивостью к болезням, из которых можно получать продукцию с новыми, привлекательными для потребителя качественными характеристиками. В этом направлении уже созданы трансгенные формы разных видов рыб, в геном которых добавлен ген, кодирующий биосинтез гормона роста. Благодаря этому рыбы быстрее растут, эффективнее, используют корма. Трансгенные свиньи с добавленным геном гормона роста более мускулистые и менее жирные. То есть из туши трансгенного кабанчика можно получить больше мяса, чем из обычного, и меньше сала.

Свиньи с добавленным геном фитазы (один из ферментов переваривания пищи) эффективнее усваивают корма за счет лучшей усвояемости фосфора, что выражается в усилении их роста. К тому же это дает возможность в меньшей степени загрязнять окружающую среду фосфатами. Трансгенные свиноматки с добавленным им геном 3-л акт-альбумина более эффективно вскармливают своих поросят.

Ряд проектов имеет целью улучшение потребительских свойств продуктов, вырабатываемых животными или из животных.

Речь, в частности, идет об улучшении качества шерсти овец, о выведении с помощью генетической инженерии пород крупного рогатого скота, в молоке которого снижена концентрация р-лактоглобулина, основного его аллергена, или изменено соотношение отдельных его белков (казеинов и сывороточных протеинов). Другой подход состоит в модификации отдельных генов для улучшения физико-химических свойств соответствующих протеинов молока с целью повышения содержания в нем кальция, изменения соотношения отдельных аминокислот, получения молока, сыр из которого созревает в более короткие сроки. Все это должно существенно улучшить потребительские и технологические свойства коровьего молока. Выиграют от этого и сами животные, поскольку улучшенное молоко — немаловажный фактор здоровья вскармливаемых им телят. Многие из этих подходов уже реализованы на модельных объектах (лабораторных мышах).

Улучшение здоровья домашних животных, повышение их устойчивости к болезням с помощью методов генетической инженерии имеет большое практическое и социальное значение. Это не только позволит повысить их продуктивность, уменьшить затраты на лечение животных (на что уходит до 10 — 20% от общей суммы затрат), но и снизит уровень употребления антибиотиков для их лечения, вероятность переноса инфекций от животных к человеку.

Для решения данной проблемы используются три основных генно-инженерных подхода:

  1. добавка генов, повышающих устойчивость к болезням,
  2. «удаление» генов восприимчивости к болезням (knockout),
  3. замена отдельных генов животного на аналогичные гены, но в большей мере способствующие активному противостоянию болезни (knockin).

В целом исследования по этим трем основным направлениям с переменным успехом проводятся на лабораторных животных. До обнадеживающих результатов на сельскохозяйственных животных дело пока не дошло.

В то же время конкретного практического выхода следует ожидать уже в ближайшее время в таком важном направлении генетической инженерии, как использование животных в качестве «биореакторов» для производства фармацевтических препаратов. Перспективы этого направления генетической инженерии применительно к растениям обсуждались выше. Несмотря на то что и растения, и животные в отличие от микроорганизмов относятся к царству эукариот, тем не менее биология растительной и животной клеток все-таки существенно различается. Поэтому для производства некоторых животных рекомбинантных протеинов более целесообразно все-таки использовать животные организмы, нежели растительные.

В настоящее время убедительно доказано, что с помощью молочных желез трансгенные животные способны производить всевозможные протеины, такие, как разные факторы крови, ферменты, моноклональные антитела, коллаген, фибриноген, шелк пауков и т.д. Разрабатываются и другие системы производства рекомбинантных белков, в частности, большие перспективы связывают с системой яичного белка кур.

Что может дать человечеству использование животных-биореакторов, можно проиллюстрировать на следующем примере.

Совместным проектом российских и белорусских ученых предусмотрено создание системы производства двух лекарственных протеинов: проурокиназы и лактоферрина человека в молоке трансгенных коз.

Проурокиназа — мощный тромболитический фермент, использование которого в первые часы после наступления инфаркта миокарда в 5 раз снижает смертность от этого заболевания. Стоимость одного курса лечения проурокиназой составляет в настоящее время около 1000 долларов США, что делает этот препарат малодоступным для большинства граждан.

Между тем в таком лечении в России и Беларуси нуждаются более 400 тысяч кардиологических больных.

Лактоферрин — белок женского молока стоимостью 2000 — 2600 долларов США за 1 грамм, препараты которого обладают сильным детоксицирующим, антибактериальным и противовоспалительным действием. Применение лактоферрина как пищевой добавки позволяет в 10 раз снизить заболеваемость гастроэнтеритами у грудных детей-искусственников. Годовая потребность в проурокиназе и лактоферрине в мире оценивается в 6,5 млрд долларов США.

Использование трансгенных животных снизит стоимость этих и большинства других подобных препаратов в 10 — 20 раз, что позволит перевести многие лекарства из разряда элитных в число общедоступных

Поделиться:
Добавить комментарий