Генно-инженерные организмы на службе медицины

В настоящее время в мире, по данным ВОЗ (Всемирной организации здравоохранения), насчитывается около 110 млн людей, страдающих диабетом. И эта цифра в ближайшие 25 лет может удвоиться.

Диабет — страшное заболевание, которое вызывается нарушением работы поджелудочной железы, вырабатывающей гормон инсулин, необходимый для нормальной утилизации содержащихся в пище углеводов. На начальных стадиях развития болезни достаточно использовать меры профилактики, регулярно следить за уровнем сахара в крови, потреблять меньше сладкого. Однако для приблизительно 10 миллионов пациентов показана инсулиновая терапия: они вынуждены ежедневно вводить в кровь препараты этого гормона. Начиная с двадцатых годов прошлого века для этих целей использовали инсулин, выделенный из поджелудочных желез свиней и телят. Животный инсулин в основном аналогичен человеческому, однако между ними имеются и определенные различия. Так, в молекуле инсулина свиньи в отличие от человеческого в одной из цепей аминокислота треонин замещена аланином. Считается, что эти незначительные на первый взгляд отличия могут вызывать у отдельных пациентов серьезные осложнения (нарушение работы почек, расстройство зрения, аллергию). Кроме того, несмотря на высокую степень очистки, не исключена вероятность переноса вирусов от животных к людям. И наконец, число больных диабетом растет так быстро, что обеспечить всех нуждающихся животным инсулином уже не представляется возможным. Заметим также, что это весьма дорогое лекарство.

Разработка технологии производства искусственного инсулина является поистине триумфом генетики. Сначала с помощью специальных методов определили строение молекулы этого гормона, состав и последовательность аминокислот в ней. В 1963 году молекулу инсулина синтезировали с помощью биохимических методов. Однако осуществить в промышленном масштабе столь дорогостоящий и сложный синтез, включающий 170 химических реакций, оказалось сложно.

Поэтому в дальнейших исследованиях упор был сделан на разработку технологии биологического синтеза гормона в клетках микроорганизмов, для чего использовали весь арсенал методов генетической инженерии.

Зная последовательность аминокислот в молекуле инсулина, ученые рассчитали, какой должна быть последовательность нуклеотидов в гене, кодирующем этот белок, чтобы получилась нужная последовательность аминокислот. «Собрали» молекулу ДНК из отдельных нуклеотидов в соответствии с определенной последовательностью, «добавили» к ней регуляторные элементы, необходимые для экспрессии гена в прокариотическом организме E.coli, и встроили эту конструкцию в генетический материал микроба. В результате бактерия смогла вырабатывать две цепи молекулы инсулина, которые в дальнейшем можно было соединить с помощью химической реакции и получить полную молекулу инсулина.

Наконец, ученым удалось осуществить в клетках E.coli биосинтез молекулы проинсулина, а не только ее отдельных цепей. Молекула проинсулина после биосинтеза способна соответствующим образом преобразовываться (формируются дисульфидные связи между цепями А и В), превращаясь в молекулу инсулина. Эта технология имеет серьезные преимущества, поскольку различные этапы экстракции и выделения гормона сведены к минимуму. При разработке такой технологии была выделена информационная РНК проинсулина. Используя ее в качестве матрицы, с помощью фермента обратной транскриптазы синтезировали комплементарную ей молекулу ДНК, которая представляла собой практически точную копию натурального гена инсулина. После пришивания к гену необходимых регуляторных элементов и переноса конструкции в генетический материал E.coli стало возможным производить инсулин на микробиологической фабрике в неограниченных количествах. Его испытания показали практически полную идентичность натуральному инсулину человека. Он намного дешевле препаратов животного инсулина, не вызывает осложнений.

Другая, не менее трагическая проблема здоровья человека связана с нарушением работы желез внутренней секреции, приводящим к выраженному замедлению роста детей и появлению так называемых лилипутов, карликов.

Это заболевание вызвано недостаточной секрецией гормона роста — соматотропина, который вырабатывается гипофизом (железой, расположенной в нижней части мозга). До середины 1980-х годов эту болезнь пытались лечить путем введения в кровь пациентов препаратов гормона роста, выделенных из гипофиза умерших людей. Нет смысла объяснять, насколько сложно получить необходимое для терапии количество такого гормона. Помимо чисто технических (в гипофизе содержится очень небольшое количество гормона), финансовых (препарат немыслимо дорогой), этических и прочих проблем имеется риск переноса пациентам опаснейших заболеваний, например всем известного синдрома Кройцфельда — Якоби — коровьего бешенства. Для достижения положительного результата лечения соматотропин вводят внутримышечно три раза в неделю в дозах порядка 6 — 10 мг на килограмм веса пациента с возраста 4 — 5 лет до половой зрелости и даже дольше. Из гипофиза одного умершего можно получить лишь 4 — 6 мг препарата. Поэтому даже разработанные на государственном уровне специальные программы по производству соматотропина в таких странах, как США, Великобритания, Франция, не могли полностью удовлетворить спрос на этот препарат. Так, в США в 70 — 80-е годы прошлого века ежегодно выделяли гипофиз у 60000 трупов. Полученного соматотропина хватало для адекватного лечения лишь 1500 детей в год.

Ген, кодирующий образование гормона роста человека, был синтезирован искусственно и встроен в генетический материал

E.coli аналогично тому, как это сделали с геном инсулина. В настоящее время проблема производства высококачественного, безопасного для здоровья пациентов соматотропина в необходимых количествах и при минимальных затратах полностью решена. Более того, с помощью технологии рекомбинантных ДНК получены штаммы микроорганизмов, способные синтезировать и другие факторы роста человеческого организма. Для целей сельского хозяйства большое значение имела организация производства гормона роста крупного рогатого скота (впервые — американской фирмой Монсанто). Его применение позволяет значительно (до 15% и более) повысить удойность коров. Сам ген, кодирующий образование соматотропина, пытаются использовать в генетической инженерии животных для выведения ускоренно растущих пород. Так, получены обнадеживающие результаты на рыбах. Лососи с встроенным геном гормона роста способны достигать потребительских размеров за один год вместо двух в отличие от обычных рыб.

Для производства «трансгенных» медицинских препаратов в настоящее время используют не только специальным образом модифицированные микроорганизмы, но и культуры животных клеток. Например, биосинтез рекомбинантного фактора VIII человеческой крови позволяет эффективно решать проблему лечения больных гемофилией (с пониженной свертываемостью крови). До этого фактор VIII выделяли из крови доноров, что связано с риском заражения пациентов вирусными инфекциями типа гепатита. Производство трансгенного эритропоэтина (гормона, стимулирующего образование красных кровяных клеток человека) помогает бороться с различными анемиями. До недавнего времени наиболее эффективным методом лечения анемии считалось неоднократное переливание донорской крови, обходившееся очень дорого и также связанное с рисками, названными выше.

Эти примеры можно продолжить. Следует отметить, что в настоящее время технология рекомбинантных ДНК позволяет получать более дешевые и безопасные вакцины для лечения опаснейших инфекционных заболеваний (гепатита, полиомиелита и др.). Во многих случаях получение подобных вакцин традиционными методами попросту невозможно. На основе генно-инженерных биотехнологий созданы более совершенные методы диагностики и лечения болезней человека. Именно с генетической инженерией человечество связывает свои надежды на решение проблемы лечения практически неизлечимых пока болезней: рака, СПИДа, шизофрении, болезни Альцгеймера, наследственных болезней: талассемии, болезни Хантингтона, фиброзного цистита и др.

Поделиться:
Добавить комментарий