Первичное озонирование происходит следующим образом.

Вода, поступающая на обработку из водоемов первого подъема через распределительную камеру, направляется в смесительные бассейны. Озоно-воздушная смесь проходит через отверстия в пористых трубах и в виде мелких пузырьков поднимается вверх по всей площади бассейна, через 4-метровый слой воды. При этом в течение 10 — 12 мин озон находится в контакте с водой. Обработанная озоном вода теряет желтый цвет, неприятный вкус и запах. Затем она возвращается в распределительные камеры и по трубам идет уже в обичные очистные сооружения, где отстаивается и фильтруется.

Смесительные бассейны блока вторичного озонироваиия (всего их шесть) разделены поперечными струнаправля- ющими перегородками на три отсека. Во время обработки часть озона входит в контакт с водой и скапливается над ее поверхностью, под перекрытием этих бассейнов.

Озонаторная установка отличается высоким уровнем автоматизации. Автоматика контролирует содержание озона в воде и воздухе на всех этапах получения, транспортирования и обработки воды.

Жители Куйбышевского, Бауманского, Первомайского, Сокольнического, Волгоградского, Ждаповского, Перовского, Пролетарского районов Москвы по достоинству оценили качество обработанной озоном воды. Эта вода не уступает по своим качествам ключевой.

Ультрафиолетовое; излучение, используемое, на водопроводных станциях для обеззараживания воды, весьма эффективно и перспективно в связи с разработкой новых мощных источников излучения. При использовании ультрафиолетовых лучей в воду не вводятся посторонние вещества, не изменяются ее физико-химические и органолеп- тические свойства. Установки для обеззараживания воды компактны, сравнительно просты в эксплуатации и легко могут быть автоматизированы. Для этого вида обеззараживания не требуются контактные емкости. Однако обеззараживать ультрафиолетовым излучением можно только воду, обладающую малой цветностью и не содержащую коллоидных и взвешенных веществ, тсоторые поглощают и рассеивают ультрафиолетовые лучи. Эффект обеззараживания основан на прямом губительном воздействии ультрафиолетовых лучей на/берковые коллоиды и ферменты протоплазмы микробных клеток. Ультрафиолетовое излучение может воздействовать не только на обычные бакте рии, но и на споровые организмы и вирусы.

Московская вода по вкусовым качествам считается одной из лучших в мире.

За качеством воды установлен строгий контроль. Ее тщательно проверяют и в месте природного источника, и в процессе обработки, и перед поступлением в водопроводную сеть. Прежде чем подать воду в наш дом, ее отстаивают и фильтруют, обеззараживают, если надо, умягчают, осветляют, избавляют от запахов.

С ростом населения потребность в питьевой воде в различных странах мира резко возрастает. Ученые разрабатывают методы получения пресной воды из морской или из солоноватой воды.

В мире уже; эксплуатируется более 800 опреснителей, которые ежесуточно вырабатывают 1,7 млн. м3 пресной воды, 90% которой расходуется на питьевые нужды. В нашей стране опресненной водой снабжается г. Шевченко с населением около 80 тыс., расположенный на п-ове Мангышлак, который таит в своих недрах природные ресурсы, но не имеет источников пресной воды. Город вырос на берегу Каспия на краю безводной пустыни. После изучения и проработки различных вариантов водоснабжения полуострова наиболее целесообразным и экономичным был признан вариант опреснения воды из Каспийского моря.

Город Шевченко — это единственный в стране и один из немногих крупных городов мира, который полностью живет на опресненной воде. Город еще очень молод, хотя и стал областным центром. При его проектировании и строительстве использовано все лучшее и передовое. Шевченко не только застроен великолепными современными многоэтажными зданиями, но имеет продуманную и совершенную систему водоснабжения. В городе проложены три водопроводные; линии. По первой подается только питьевая вода, по второй — менее качественная техническая вода для ванных комнат и полива зеленых насаждений, по третьей — морская вода для канализации. Благодаря такой разумной и экономной системе водоснабжения каждый житель Шевченко расходует столько же воды, сколько жители таких крупных городов, как Москва, Ленинград и Киев.

Опресненная дистилляцией вода имеет неприятный привкус и запах; в ней почти полностью отсутствуют важные в гигиеническом отношении ингредиенты — кальций, фтор, бикарбонаты и др. Длительное употребление такой воды может вызвать неблагоприятные изменения в организме человека. Кроме того, дистиллят обладает агрессивными свойствами по отношению к конструкционным материалам, и при транспортировании по стальным трубопроводам загрязняется продуктами коррозии. Поэтому на станции приготовления питьевой воды дистиллят подвергают обработке до уровня, соответствующего требованиям стандарта на питьевую воду.

В 1970 г. в Шевченко введена в эксплуатацию первая промышленная станция приготовления питьевой воды производительностью 30 тыс. м3/сут. На станцию поступает охлажденный дистиллят. Здесь его хлорируют. Артезианскую соленую воду очищают от железа и сероводорода путем хлорирования и фильтрования через кварцевый песок. Дистиллят смешивают с артезианской водой в напорном смесителе. Смесь доочищают но такой схеме: дезодорация, стабилизация и обогащение кальцием, фторирование и обеззараживание. Дезодорация смеси производится на восьми загруженных углем напорных сорбционных фильтрах. При фильтровании через уголь вода освобождается от органических соединений, придающих ей привкусы и запахи. Сорбционные фильтры периодически регенерируются. Обогащение воды кальцием происходит при фильтровании ее через мраморную крошку. На станции установлено шесть напорных мраморных фильтров, диаметром 3 м каждый. Высота фильтрующего слоя — 3 м. Мраморная крошка в фильтрах периодически промывается обратным током очищенной воды. Профильтрованную воду хлорируют, фторируют, и только после этого она поступает в подземные резервуары для очищенной воды, откуда затем подается в водопроводную сеть города.

В городе много зеленых насаждений. А ведь каждое дерево выпивает 5 — 10 л воды в час, т.е. за год на одно дерево потребуется израсходовать 50 — 100 м3 поливной воды. В г. Шевченко на каждого жителя приходится почти 10 м2 зеленых насаждений, что больше, чем в некоторых столицах мира (Токио, Париж, Лондон и др.), не говоря уже о г. Эль-Кувейте, также живущем на опресненной воде.

Маленькое княжество Кувейт в Персидском заливе площадью 15,5 тыс. км2 славится богатыми месторождениями нефти и страдает от полного безводья. В Кувейте тонна нефти стоила намного дешевле тонны воды, приведенной из Ирака. В 1953 г. в Кувейте построен первый опреснительный завод, работающий на бесплатном попутном газе, прежде сжигавшемся в факелах на нефтепромыслах. Позже было введено в строй еще несколько опреснителей. Теперь Кувейт является крупнейшим в мире производителем опресненной воды. Построенные правительством 14 опреснительных заводов общей производительностью более 212 тыс. м3/сут полностью обеспечивают водой новый город Эль-Кувейт и все государство. В городе стала появляться зелень, но оплачивается она дорогой ценой; уход и полив каждого взрослого дерева или пальмы обходятся в 60 — 150 долларов в год.

Много опреснителей построено в районе Карибского моря на Малых Антильских и Багамских островах для водоснабжения Населения и крупных нефтеперерабатывающих заводов. Работают опреснительные установки и во многих безводных и маловодных районах тропической зоны земного шара (Австралия, Ближний Восток, Северная Африка, Латинская Америка и др.), а в последние годы строятся уже и в увлажненной зоне — в Европе, Азии и Америке.

В окрестностях ливийской столицы вступила в строй первая очередь крупнейшего в Северной Африке теплоэнергетического комплекса. Он включает тепловую электростанцию мощностью 500 тыс. кВт и завод для опреснения морской воды производительностью 12 тыс. м3/сут. Вторая очередь комплекса действует с конца 1976 г. Введены в эксплуатацию еще два крупных электроагрегата, мощностью по 250 тыс. кВт каждый. Производительность установки по опреснению морской воды возросла почти вдвое.

Немногие суда, отправляясь в плавание, берут сейчас пресную воду. Гораздо выгоднее и удобнее получать ее непосредственно из морской воды с помощью испарительной установки, находящейся на борту корабля.

Японские ученые проводят эксперимент по промышленному опреснению морской воды. В г. Наганосу применен метод многоступенчатой дистилляции, основанный на способности воды закипать в условиях низкого. атмосферного давления при температуре менее 100°. Насосы подают морскую воду на предприятие, где она проходит последовательно 50 камер, в которых давление постепенно понижается. Вода в них закипает прц все. более низких температурах, а образовавшийся пар конденсируется и превращается в пресную воду. С завершением строительства последней очереди этого предприятия, по расчетам специалистов, здесь будет производиться 100 тыс. т пресной воды в день.

Ученые давно искали пути использования дешевой солнечной энергии для опреснения воды. Ведь в природе этот процесс совершается с высокой эффективностью и в гигантских масштабах. Действительно, в южных районах, где солнечного тепла много, а пресной воды мало, для этого имеются благоприятные условия. Так, на широте Ашхабада сумма прямой солнечной радиации равна 1,866 Гкал/м2. Этого тепла достаточно для испарения слоя воды в 3 тыс. мм.

Хотя солнечное тепло и даровое, но гелиоопреснение обходится отнюдь не дешево и требует больших капиталовложений.

В СССР разработаны различные конструкции опреснителей (парникового типа и с концентраторами энергии, стационарные и переносные), подготовлен образец опытно-промышленного солнечного опреснителя площадью 2,4 тыс. м2 и производительностью 12 м3/сут..

В 1969 г. в Туркмении на отгонных пастбищах совхоза «Бахарден» на колодце Овез-Ших построена первая очередь этого опреснителя площадью 600 м2, а в Каракумах — вторая очередь площадью 1,8 тыс. м2. Теперь опреснитель обеспечивает водой две-три отары овец. В 1971 г. в Узбекистане сооружен еще один солнечный опреснитель парникового типа в совхозе «Шафрикан» Бухарской области. Как основной опреснитель площадью 600 м2, так и опреснители по 100 м2 других типов предназначены в основном для изучения и оценки технических и экономических возможностей гелиоопреснения.

Поделиться:
Добавить комментарий