Природа рисков для здоровья человека и окружающей среды, связанных с генно-инженерными организмами.

Для лучшего понимания природы рисков, связанных с генно-инженерными организмами, уместно вкратце напомнить, что из себя представляют генетически модифицированные организмы и чем они отличаются от обычных, «немодифицированных». В Картахенском протоколе по биобезопасности содержится следующее их определение: «живой измененный организм» означает любой живой организм, обладающий новой комбинацией генетического материала, полученной благодаря использованию современной биотехнологии (Картахенский протокол по биобезопасности, статья 3). Типичная «новая комбинация генетического материала, полученная с помощью современной биотехнологии», показана на рисунке 11.

Таким образом, какой-либо трансгенный сорт растения отличается от исходного только тем, что в его генетическом материале к 25 — 30 тысячам существующих генов добавлен относительно небольшой фрагмент ДНК, в котором записана информация об одном-двух новых генах и их регуляторных элементах. Активность Этих добавленных генов в организме выражается в биосинтезе одного-двух новых для организма протеинов (ферментов или структурных белков).

Поскольку генетическая инженерия может оперировать любыми генами, существующими в природе, а не только генами от организмов, состоящих в эволюционном родстве с отдельными видами культурных растений, как это делается в традиционной селекции, то продукты привнесенных генов (ферменты, протеины) могут выглядеть в генетически модифицированном организме как необычные, несвойственные, чужеродные для данного вида, которые в природе у него не встречаются. Соответственно именно продукты трансгенов являются наиболее существенными, осязаемыми факторами рисков, связанных с генно-инженерными организмами.

Типичная трансгенная конструкция, используемая в генетической инженерии растений

Рисунок. 11. Типичная трансгенная конструкция, используемая в генетической инженерии растений.

LB — левый край, RB — правый край: фрагменты ДНК, содержащие по 25 пар нуклеотидов от Ti-плазмиды Agrobacterium tumefaciens, необходимые для переноса трансгенных конструкций в растительные клетки с помощью метода агро-бактериальной трансформации. Во многих генетических конструкциях селективный ген и его регуляторные элементы отсутствуют.

С уверенностью можно утверждать, что это не относится к добавленному фрагменту ДНК, так как строение наследственного материала у всех организмов на нашей планете универсально. И у человека, и у животных, растений, грибов, бактерий и вирусов он устроен одинаково: речь идет о полимере, состоящем из двух связанных цепочек чередующихся в различном сочетании четырех нуклеотидов.

Сама по себе ДНК в чистом виде является абсолютно безопасным для человека продуктом. На протяжении всей жизни человек ежедневно потребляет его без какого-либо ущерба для своего здоровья.

Что касается рекомбинантных протеинов, то не во всех ГМО они являются абсолютно чужеродными, несвойственными для определенного вида соединениями.

  • Во-первых, существует достаточно большая группа трансгенных сортов растений, которые получены благодаря генетическим манипуляциям с их собственными генами (томаты с удлиненным периодом хранения, соя, рапс с улучшенным составом масла, картофель с улучшенным качеством крахмала, кофе без кофеина, табак без никотина и другие).
  • Во-вторых, многие весьма отдаленные в эволюционном плане организмы имеют большое количество идентичных путей метаболизма, и соответственно состав и строение ферментов, которые обеспечивают их реализацию, также идентичны. В качестве примера можно привести упомянутый выше фермент EPSPS, который является ключевым в биосинтезе ароматических аминокислот у всех растений, грибов, бактерий. Бактериальный EPSPS, образующийся у трансгенной сои, толерантной к гербициду Раундап, вполне успешно выполняет соответствующие функции в растительном организме после обработки растений гербицидом, когда свой, растительный EPSPS сои дезактивирован. Однако при оценке безопасности таких близких по функциональной активности генов следует обращать внимание не столько на сам белок — продукт трансгена, сколько на возможное изменение отдельных путей метаболизма трансгенного растения из-за повышения концентрации одного из их компонентов. В случае с тем же EPSPS при оценке безопасности генетически модифицированной сои принималось во внимание, что этот фермент катализирует реакцию, не лимитирующую конечную скорость синтеза ароматических аминокислот, поэтому, как и ожидалось, показатели их синтеза у ГМО не отличались от таковых у исходных растений.
  • В-третьих, последние научные данные, полученные в результате изучения строения генетического материала человека, некоторых животных и растений, существенно расширили наши представления о сходстве и отличиях генов разных систематических групп и вероятности их переноса от одной отдаленной систематической группы к другой (горизонтальный перенос генов). Оказалось, что в геноме уже знакомого читателям растения арабидопсис присутствует около сотни генов человека, в том числе таких, как ген рака молочной железы! Почвенная бактерия Agrobacterium tumefaciens регулярно переносит часть своих генов в растения, вызывая у них образование опухоли — корончатый галл. Это абсолютно естественный, Богом данный процесс, который с успехом используют и генные инженеры. Подобных примеров можно привести очень много.

Таким образом, то, что делают генетики, ни в коей мере не противоречит законам природы. Обмен генетической информацией между отдаленными видами в ней происходит постоянно. В отдельных случаях для этого требуются миллионы лет, а в некоторых (агробактериальная трансформация) это может происходить ежедневно и ежечасно. Тем не менее любой ученый, планируя добавить растению, микробу или животному какой-либо новый ген, должен тщательно изучить сам этот ген, а также продукт его активности и убедиться в их безопасности.

Вторая основная группа рисков связана с самим фактом вставки трансгенов в генетический материал организма.

Есть основания полагать, что встраивание трансгенов происходит случайным образом, то есть они могут встроиться практически в любую область молекул ДНК, содержащихся в трансформируемой клетке: в любую хромосому, любую часть хромосомы, если речь идет о высших организмах. Чем это чревато? Прежде всего тем, что привнесенный ген может затронуть область ДНК, которая кодирует структуру или регуляторные элементы какого-либо гена модифицируемого организма (рисунок 12). Вероятность этого события в целом не так велика, как может показаться на первый взгляд. Дело в том, что генетический материал высших организмов устроен таким образом, что собственно генами и их регуляторными элементами занято менее 10% длины молекулы ДНК, что, как полагают, повышает стабильность, устойчивость молекулы ДНК к внешним воздействиям. 

Возможные места встраивания трансгена в геноме растения

Рисунок. 12. Возможные места встраивания трансгена в геноме растения.

Это означает, что гены на молекуле ДНК расположены не плотно один за другим, как кадры на кинопленке, а через большие промежутки, занятые некодирующими последовательностями нуклеотидов. Более того, даже в пределах кодирующих последовательностей генов (то есть той области молекулы ДНК, в которой записана информация о последовательности аминокислот в белке — продукте гена) имеются области, так называемые интроны, которые также не несут никакой генетической информации. Они вырезаются в ходе «созревания» молекулы информационной РНК, образовавшейся при транскрипции гена.

Тем не менее вероятность того, что трансген может встроиться в область ДНК, уже занятую другим геном, все же существует.

Если при этом будет затронута область, кодирующая структуру поврежденного гена (стрелка 1 на рисунке 12), то в результате продукт данного гена образовываться не будет. Этот ген как бы распадается на две неполноценные части: одна, передняя, имеет элементы, необходимые для начала транскрипции (образования информационной РНК), но не имеет терминальной последовательности, другая, задняя, имеет только терминальные элементы. К тому же обе части кодирующей области являются неполными. Очевидно, что аналогичный результат будет иметь место и в случае повреждения промотора или терминальных последовательностей.

Если затронутый ген выполняет какую-то важную функцию в организме, то отсутствие его продукта может иметь весьма печальные для него последствия, вплоть до потери жизнеспособности. Понятно, что до уровня коммерческого сорта генотипы с поврежденными генами дойти не могут в принципе.

Если в процессе встраивания будут затронуты другие регуляторные элементы — энхансеры («усилители» активности генов) или сайлэнсеры («замедлители»), то это может привести к изменению активности затронутых вставкой генов. Сорта растений, образующие какие-либо токсичные соединения (например, соланины картофеля) в концентрациях, безвредных для здоровья человека, в результате генетической модификации способны усилить их синтез до уровня, превышающего предельно допустимые значения. Такие генотипы уже становятся опасными для здоровья.

Наконец, третья основная группа рисков, связанных с генно-инженерными организмами, основана на неблагоприятных эффектах, вызванных переносом трансгенов другим организмам: вертикальным переносом генов от ГМО диким сородичам культурного вида или горизонтальным переносом генов, например селективных генов устойчивости к антибиотикам от генетически модифицированного растения микроорганизмам пищеварительного тракта. Здесь все понятно: гены и их продукты, безобидные у ГМО, могут оказаться весьма опасными в другой генетической и экологической среде.

Так, приобретение болезнетворными бактериями пищеварительного тракта устойчивости к антибиотикам может существенно затруднить лечение болезней, которые они способны вызывать.

Поделиться:
Добавить комментарий